
C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 1 | 25

Lecture No. 13

1-D Numerical Quadrature

 Element matrix and vector contributions can be computed using numerical quadrature.

 In numerical quadrature, an integral is approximated by a linear combination of integrand

values, such that the quadrature is exact for polynomial integrands up to a degree

determined by the order of the quadrature formula.

 There are two main classes of formulae:

 Newton-Cotes formulae: generally less efficient but simple integrands at equispaced points.

 Gaussian Quadrature: sampling points are not equispaced: fewer evaluations are required

 than Newton-Cotes.

𝐼 = ∫ 𝑓(𝜉)𝑑𝜉 = ∑𝑤𝑖𝑓(𝜉𝑖) + 𝐸𝑛

𝑛

𝑖=1

+1

−1

where

 𝑤𝑖 = weighting factor and 𝜉𝑖 = coordinate of the ith integration point

 𝑛 = total number of integration points

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 2 | 25

 𝐸𝑛 = error = 0(
𝑑2𝑛𝑓

𝑑𝜉2𝑛)

 n exact for i 𝜉𝑖 𝑤𝑖

 1 linear 1 0 2

 2 cubic 1 +1/√3 +1

 2 −1/√3 +1

 3 quintic 1 0 8/9

 2 +√15/5 5/9

 3 −√15/5 5/9

 4 septimal 1,2 ±0.86113631 0.34785485

 3,4 ±0.33998104 0.65214515

 The Gaussian quadrature formulae are exact for polynomials for degree 2n-1. The

integration points and weights were derived on this premise.

 The formulae will also be exact for any integer degree polynomial below this order.

 Gaussian Quadrature also has slightly superior error coefficients as compared to Newton-

Cotes.

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 3 | 25

Motivation for Numerical Quadrature

1. Flexibility in choosing interpolating functions at the execution time of the program. Thus

we can implement the program such that any order interpolation may be specified at the

time of execution. The quadrature formulae are then used to evaluate matrices.

2. We can integrate functions which are difficult to or can not be integrated in closed form:

𝑐𝑓
1

(η + ℎ)
(𝑢2 + 𝑣2)1/2𝑢

3. When the terms are complex and interpolating functions are of high order, it may be simpler

and/or more efficient to use quadrature formulae.

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 4 | 25

Example

𝑀(𝑛) =
𝐿𝑛

2
∫ [

𝜙1

𝜙2

𝜙3

] [𝜙1 𝜙2 𝜙3]𝑑𝜉

+1

−1

𝜙1 = 𝜉(𝜉 − 1)/2 𝜙2 = (1 − 𝜉2) 𝜙3 = 𝜉(1 + 𝜉)/2

The highest product will involve quartic terms. We must select 𝑛 = 3 and use 3 integration

points which are specified as:

 i 𝜉𝑖 𝑤𝑖

 1 0 8/9

 2 +√15/5 5/9

 3 +√15/5 5/9

Thus 𝐼 =
8

9
𝑓(0) +

5

9
𝑓 (

−√15

5
) +

5

9
𝑓 (

+√15

5
) where 𝑓 = 𝜙𝑇𝜙

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 5 | 25

Let’s evaluate 𝜙 at the 3 integration points:

𝜙|
𝜉1

= [
0(0 − 1)

2
, (1 − 02),

0(1 + 0)

2
] = [0,1,0]

𝜙|
𝜉2

=

[

 √15

5
(
√15
5

− 1)

2
, (1 −

15

25
) ,

√15
5

(1 +
√15
5

)

2

]

= [−0.08730, 0.4000, 0.68730]

𝜙|
𝜉3

= [0.68730, 0.40000,−0.08730]

Now take the products of the 𝜙.

8

9
𝜙𝑇𝜙|

𝜉1

=
8

9
[
0
1
0
] [0 1 0] = [

0 0 0
0 0.8889 0
0 0 0

]

5

9
𝜙𝑇𝜙|

𝜉2

=
5

9
[
−0.08730
0.40000
0.68730

] [−0.08730 0.4000 0.68730]

= [
0.004234 −0.019400 −0.03333

−0.019400 0.088889 0.152733
−0.03333 0.152733 0.262434

]

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 6 | 25

5

9
𝜙𝑇𝜙|

𝜉3

=
5

9
[

0.68730
0.40000

−0.08730
] [0.68730 0.4000 −0.08730]

= [
0.262434 0.152733 −0.03333

0.088889 −0.019400
0.004234

]

Adding all the contributions together:

𝑀(𝑛) =
𝐿𝑛

2
{
8

9
(𝜙𝑇𝜙)|

𝜉1

+
5

9
(𝜙𝑇𝜙)|

𝜉2

+
5

9
(𝜙𝑇𝜙)|

𝜉3

} =
𝐿𝑛

2
[
0.2666 0.13333 −0.06666

1.06666 0.13333
0.26668

]

 This matrix is identical to the one we developed analytically. The procedure is easy to

implement, even for very high order interpolation.

 We note that when a number of known variable coefficients are included (e.g. 𝑉,𝐷 etc.), it

may be more economical to perform numerical integration.

 Finally we note that we always evaluate the interpolating function vector 𝜙 (and/or 𝜙,𝜉) at

the integration points and then form products.

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 7 | 25

Order of the interpolating function

 𝜙 𝜙,𝜉

 linear 1 0

 quadratic 2 1

 cubic 3 2

 quartic 4 3

Order of products in our C-D formulation:

Interpolation Order 𝑀(𝑛)

𝜙𝜙

𝐴(𝑛)

𝜙𝜙𝜙,𝜉

𝐵(𝑛)

𝜙,𝜉𝜙,𝜉

N required for Gaussian

Quadrature*

Linear 1 2 2 0 2

Quadratic 2 4 5 2 3

Cubic 3 6 8 4 5

Quintic 4 8 11 6 6

INOR INOR 2*INOR 3*INOR-1 2*(INOR-1)

*In order for the integration to be exact.

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 8 | 25

Gaussian Quadrature is exact for degree 2n-1

 n Exact for

 1 1

 2 3

 3 5

 4 7

 5 9

 6 11

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 9 | 25

Time discretization for the C-D Equation

The system of global equations we wish to solve:

𝑀𝑢,𝑡 + (𝐴 + 𝐵)𝑢 = 𝑃

let

𝑡𝑗+1 = 𝑡𝑗 + ∆𝑡

Using a weighted implicit/explicit discretization we have

𝑀 [
𝑢𝑗+1 − 𝑢𝑗

∆𝑡
] + [𝐴𝑗+1 + 𝐵𝑗+1]𝜃𝑢𝑗+1 + [𝐴𝑗 + 𝐵𝑗](1 − 𝜃)𝑢𝑗 = 𝜃𝑃𝑗+1 + (1 − 𝜃)𝑃𝑗

𝜃 = implicit fraction

𝜃 = implicit fraction = {
0 → 𝑓𝑢𝑙𝑙𝑦 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡
1 → 𝑓𝑢𝑙𝑙𝑦 𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡

0.5 → 𝐶𝑟𝑎𝑛𝑘 − 𝑁𝑖𝑐𝑜𝑙𝑠𝑜𝑛

𝑀 does not have time varying components (except if the grid changes with time)

𝐴 and 𝐵 do not have time varying components, we can have 𝑉(𝑡) and 𝐷(𝑡)

{𝑀 + ∆𝑡𝜃(𝐴𝑗+1 + 𝐵𝑗+1)}𝑢𝑗+1 = 𝑀𝑢𝑗 + (𝜃 − 1)∆𝑡(𝐴𝑗 + 𝐵𝑗)𝑢𝑗 + ∆𝑡𝜃𝑃𝑗

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 10 | 25

 Recall that

𝑀(𝑛) = ∫ 𝜙𝑇𝜙𝑑𝑥

𝛺(𝑛)

𝑀(𝑛) is not time varying (unless the domain changes in time).

𝐴𝑗
(𝑛)

= ∫ 𝜙𝑇𝜙𝑉𝑗
(𝑛)

𝜙,𝑥𝑑𝑥

𝛺(𝑛)

If 𝑉𝑗
(𝑛)

 varies in time, we must re-evaluate it at every time step.

𝐵𝑗
(𝑛)

= 𝐷𝑗
(𝑛)

∫ 𝜙,𝑥
𝑇𝜙,𝑥𝑑𝑥

𝛺(𝑛)

If 𝐷(𝑛) varies in time, we must re-evaluate this matrix at every time step

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 11 | 25

Fully explicit time discretization

𝑀𝑢𝑗+1 = 𝑀𝑢𝑗 + ∆𝑡(𝐴𝑗 + 𝐵𝑗)𝑢𝑗 + ∆𝑡𝑃𝑗

 The explicit FE solution requires the solution of a matrix!

 We only need evaluate and decompose the system matrix once since it will never vary in

time (even when V and D vary with time). This makes implementation more efficient since

for direct matrix solvers:

 0(𝑛3) operations for decomposition of matrix

 0(𝑛2) operations for back substitution to solve for 𝑢𝑗

Therefore if we need not modify the system matrix at every time step (this is indeed the case

with a fully explicit scheme) we save at least a factor of 0(𝑛) operations. However we note

that the explicit scheme will have stability constraints on the size of the time step.

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 12 | 25

Scheme not fully explicit

Then the system matrix equals:

𝑆 = 𝑀 + ∆𝑡𝜃(𝐴𝑗+1 + 𝐵𝑗+1)

If either 𝐴𝑗
(𝑛)

 or 𝐵𝑗
(𝑛)

 vary in time due to variations in material properties V and D we must:

1. re-assemble the updated system matrix

2. re-decompose the system matrix

This involved at least 0(𝑛3) operations per time step.

We note that if V and D do not vary temporally, we need only assemble and decompose one

for all time steps. Thus this would make the partially implicit scheme require the same order

of operations per time step as the fully explicit scheme (0(𝑛3) operations): However

i) The partially implicit system matrix is not symmetrical whereas the fully explicit is.

Explicit storage and solution per time step is somewhat more efficient.

ii) If 𝜃 ≥ 0.5 we have no constraints on time step for stability.

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 13 | 25

Finally we note that if the grid varies spatially in time (e.g. due to flooding), we would always

have to re-set and re-solve all matrices.

Symmetry of Coefficient Matrices

 Explicit Schemes:

 System matrix = {𝑀}

 Therefore symmetric matrix (since 𝑀 is symmetric)

 Implicit Schemes: (or partially implicit)

 System matrix = {𝑀 + ∆𝑡𝜃(𝐴𝑗+1 + 𝐵𝑗+1)}

 Non-symmetric, since convection matrix 𝐴𝑗+1 is not symmetric.

 We must use a full matrix.

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 14 | 25

Introduction of essential b.c.’s into the symmetrical system matrix

Introduce b.c. 𝑢1 = �̅�1

Steps for full storage mode:

1. Zero out row 1 and put 1 on the diagonal

2. Replace 𝑝1 with �̅�1

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 15 | 25

3. Now the system matrix is no longer symmetrical. Therefore we multiply the coefficients in

column 1 by �̅�1 and subtract from the right hand side. Then zero out column 1 in the system

matrix.

Steps for symmetrical storage mode:

1. Subtract off (row 1)T multiplied by �̅�1 from r.h.s. (this is equivalent to subtracting column 1

with the exception of the diagonal term)

2. Now zero out the 1st row and pout 1 on the diagonal and replace 𝑝1 with �̅�1

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 16 | 25

Global Matrix Structure for 1-D Spatial Problems:

For linear Lagrange each element has 2 nodes and results in a 2x2 elemental matrix.

When considering functional continuity requirements and assembling into a global matrix we

obtain a tri-diagonal matrix:

Note that the equations are associated with global nodes

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 17 | 25

For quadratic Lagrange, each element has 3 nodes and 3x3 elemental matrices which assemble

into the following penta-diagonal global matrix:

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 18 | 25

Lumping of Mass Matrix

Producing a diagonal matrix from a banded mass matrix (typically for the matrix associated

with the time derivative term)

𝑀 → 𝐷

where 𝑀 is a banded matrix and 𝐷 is a diagonal matrix.

 We note that the inversion of a diagonal matrix is trivial

𝐷 → 𝐷−1

We only take the reciprocal of each of the diagonal elements

Explicit Schemes

C-D equation:

𝑀𝑢𝑗+1 = −∆𝑡(𝐴𝑗 + 𝐵𝑗)𝑢𝑗 + ∆𝑡𝑃𝑗 + 𝑀𝑢𝑗

Let’s “diagonalize” 𝑀 → 𝐷

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 19 | 25

𝐷𝑢𝑗+1 = −∆𝑡(𝐴𝑗 + 𝐵𝑗)𝑢𝑗 + ∆𝑡𝑃𝑗 + 𝐷𝑢𝑗

The solution now becomes trivial at each time step. Simply invert 𝐷 → 𝐷−1. Note that in the

non-lumped case, we do not use an inversion process and instead must apply triangularization

and back-substitution. For the lumped case:

𝐷−1𝐷𝑢𝑗+1 = −∆𝑡𝐷−1(𝐴𝑗 + 𝐵𝑗)𝑢𝑗 + −∆𝑡𝐷−1𝑃𝑗 + 𝐷−1𝐷𝑢𝑗

Therefore

𝑢𝑗+1 = 𝑢𝑗 − ∆𝑡(𝐷−1𝐴𝑗 + 𝐷−1𝐵𝑗)𝑢𝑗 + ∆𝑡𝐷−1𝑃𝑗

Now, instead of back substituting for 𝑢𝑗+1 we can directly solve. This simplifies things a lot!!!

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 20 | 25

Molecules

 𝑀 (
𝑢𝑗+1−𝑢𝑗

∆𝑡
) (𝐴𝑗 + 𝐵𝑗)𝑢𝑗

 non lumped non-lumped

Lumped Lumped is not feasible!

Note that it is not possible to lump the convection or diffusion matrices. The spatial derivative

terms would entirely lose their meaning! This is true for both implicit and explicit schemes.

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 21 | 25

Partially or Fully Implicit Schemes

{𝑀 + ∆𝑡𝜃(𝐴𝑗+1 + 𝐵𝑗+1)}𝑢𝑗+1 = (𝜃 − 1)∆𝑡(𝐴𝑗 + 𝐵𝑗)𝑢𝑗 + ∆𝑡𝜃𝑃𝑗+1 + ∆𝑡(𝜃 − 1)𝑃𝑗 + 𝑀𝑢𝑗

We can lump 𝑀 → 𝐷. We can not lump 𝐴 or 𝐵. Thus lumping does not reduce the band

structure of the system matrix to a diagonal matrix. Therefore there is no reason to lump in a

partially implicit scheme.

General Effects of Lumping

1. For an explicit scheme: Lumping drastically increases efficiency (particularly in 2-D/3-D

applications).

2. Lumping is not useful in increasing efficiency in implicit schemes.

3. When comparing explicit to implicit schemes we should not that explicit schemes always

involve stability constraints on time step. The time step constraint on the lumped explicit

scheme will increase computational effort which may not be offset by increased efficiency

of lumping, i.e. it may be better to use a partially implicit non-lumped scheme (in particular

a C-N scheme).

4. Lumping always deteriorates the phase propagation characteristics of the FE scheme (for

both C-D, N.S, wave equation, etc.)

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 22 | 25

5. The lumped explicit scheme using Lagrange linear elements yields the same nodal

equations as the central FD explicit (FTCS) scheme. Therefore lumped FE scheme will be

no worse than the FD scheme.

Implementation of Lumping

 A lumped diagonal matrix is obtained by adding the off-diagonal terms to the diagonal

locations and then zeroing the off-diagonal locations.

𝑀(𝑛) = [
𝑥 𝑥 𝑥
𝑥 𝑥 𝑥
𝑥 𝑥 𝑥

] → 𝐷(𝑛) = [
𝑥 + 𝑥 + 𝑥 0 0

0 𝑥 + 𝑥 + 𝑥 0
0 0 𝑥 + 𝑥 + 𝑥

]

 Thus we lump the mass matrix but not the convection of diffusion matrices. Recall also that

the mass matrix is associated with the time derivative (mass x acceleration = forces).

 Physical interpretation of lumping: replace a continuous string by a massless string with the

distributed mass now being concentrated as “beads” at the nodes.

For 𝑝 = 1 (constant)

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 23 | 25

 Mathematical Interpretation of Lumping

𝑀(𝑛) =
𝐿𝑛

2
∫ [

𝜙1

𝜙2
] [𝜙1 𝜙2]𝑑𝜉 =

+1

−1

𝐿𝑛

2
∫ [

𝜙1𝜙1 𝜙1𝜙2

𝜙2𝜙1 𝜙2𝜙2
] 𝑑𝜉

+1

−1

 Each term represents a quadratic.

 Lumping may be accomplished by using a Newton-Cotes quadrature rule which is one

order. This will introduce some type of additional truncation error!

 Recall that Newton-Cotes uses integration points at evenly spaced points. Using 1 order too

low and integration formula for the mass matrix will result in these integration points

corresponding with the nodes.

 Newton-Cotes Quadrature

𝑛 = 1 𝑤𝑜 = 1 𝜉𝑜 = −1

 𝑤1 = 1 𝜉𝑜 = +1|

This formula is exact for a linear polynomial. Furthermore the integration points correspong

to the nodes.

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 24 | 25

 Let’s examine the terms in the mass matrix:

∫ 𝜙1𝜙1𝑑𝜉 = ∑𝑤𝑗𝜙1𝜙1|𝜉𝑗

1

𝑗=0

+1

−1

However

𝜙1 =
1

2
(1 − 𝜉)

𝜙2 =
1

2
(1 + 𝜉)

thus

∫ 𝜙1𝜙1𝑑𝜉 = 1(1)(1) + (1)(0)(0) = 1

+1

−1

Similarly:

∫ 𝜙1𝜙1𝑑𝜉 = ∑𝑤𝑗(𝜙1𝜙1)|𝜉𝑗

1

𝑗=0

+1

−1

= (1)(0)(1) + (1)(1)(0) = 0

In general:

𝑀(𝑛) ≈ 𝐷 =
𝐿𝑛

2
[
1 0
0 1

]

C E 6 0 1 3 0 F I N I T E E L E M E N T M E T H O D S - L E C T U R E 1 3 P a g e 25 | 25

This is the same matrix achieved by using exact quadrature and then “lumping” the terms

directly onto the diagonal terms.

 However some error has been introduced into the evaluation of 𝑀 since we used too low an

order Newton Cotes rule. This leads to an additional truncation error.

This explains why lumped formulations have poorer accuracy characteristics as compared

to non-lumped schemes.

i.e. phase errors are much more pronounced in lumped schemes, more oscillations are

apparent.

 We can lump any matrix with non-derivative terms, e.g. mass matrix, force distribution

matrices (e.g. bottom friction, Coriolis)

